低压MOS管是电子设备中的关键组件,IRF系列、IPP系列和N沟道增强型是常见的类型。IRF系列性能卓越,广泛应用;IPP系列广泛应用于电源管理和功率开关;N沟道增强型类似阀门,可控制电流;P沟道增强
本文主要介绍了 MOSFET 静态参数测试方法及其重要性。其中,阈值电压和漏极击穿电压是关键参数,它们决定了 MOSFET 在电路中的性能表现。
本文主要探讨了MOS管发热的原因和解决之道。MOS管发热并非无由,其发热主要是由于电路设计不合理、驱动频率过高以及选型不当导致的。解决MOS管发热的方法有加装散热片、扩大散热面积和改进MOS管选型。
本文深入探讨了MOS管电路中的上拉电阻和下拉电阻的工作原理、应用场景及设计选型方法。上下拉电阻确保MOS管输入端稳定,防止电平漂移、静电击穿及逻辑错误。
在电子工程中,MOS管是应用广泛的重要元件。然而,它却面临着“米勒效应”这一问题,严重影响了其开关速度和稳定性。为了解决这个问题,工程师们采用了特殊的驱动电路和优化布局布线等策略,有效降低了米勒效应的
MOS管在电子电路中起着关键作用,但当栅极与漏极短路时,会引发一系列连锁反应,影响电路性能和安全性。静态工作状态下,MOS管通过调整栅极电压控制电流流动。然而,一旦栅极与漏极短接,失去线性区或截止区的
MOS半桥驱动芯片是驱动高效能电气控制的关键元器件,其核心任务是精准控制高、低侧两个MOSFET的导通与关断。驱动芯片必须内置电平位移电路,插入一段高、低侧驱动信号都为关断状态的死区时间,以保证系统的
电子工程中,MOS管并联驱动芯片的应用日益广泛,提高电路效率的关键在于合理选型和均流技术。选型时需考虑耐压、导通电阻、开关速度等参数,保证并联的多个MOS管协调一致工作。
本文深入剖析了3300V碳化硅MOS管在电力电子领域的优势。这种器件拥有高耐压、低损耗、高速特性、高频特性与高温耐受的“双核优势”,在轨道交通和能源革命等领域发挥着“全能角色”。碳化硅材料的高宽带隙特
大功率MOS管栅极驱动芯片在电力电子系统中发挥着关键作用。快速开关、克服米勒效应、高栅极驱动电压和瞬态大电流能力是驱动芯片必须解决的关键问题。高性能驱动芯片是实现大功率MOS管高效控制的关键工具。
诺芯盛备案号:粤ICP备2022029173号-4 热销型号:ASDM30C16E-R ASDM3010S-R APM20G02LI AGM311MN